Hall Ticket Number:

Code No. : 22202

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year (E.E.E.) II-Semester (Main) Examinations, May-2016

Digital Electronics and Logic Design

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

- 1. Minimize the given Boolean expression using K-Map $F(A, B, C, D) = \Sigma m (0, 1, 2, 8, 9, 10, 11, 15).$
- 2. List out the postulates of Boolean algebra.
- 3. Draw the basic NOR and NAND gate using RTL and DTL
- 4. Distinguish between encoder and decoder
- 5. Describe the operation of Full subtractor using truth table and draw its logic diagram.
- 6. Using 10's complement solve i) $(72532)_{10} (3250)_{10}$ ii) $(45633)_{10} (53244)_{10}$.
- 7. Design T-Flip-Flop using JK-Flip Flop
- 8. Is magnitude comparator a combinational or sequential circuit? Justify.
- 9. Differentiate between PLA and PAL.
- 10. Distinguish between synchronous and asynchronous counter.

Part-B $(5 \times 10 = 50 \text{ Marks})$

11.	a) Explain about incompletely specified function. Mention whether it is advantage or disadvantage.	[4]
	b) Minimize the following Boolean function using K-Map $F(A, B, C, D) = \prod M (1, 2, 3, 5, 7, 8, 10, 15).$	[6]
12.	a) Compare the performance of TTL, ECL and CMOS logic gates with reference to fan-in, fan-out, noise immunity and propagation delay. Give typical values in each case.	[5]
	b) Design a combinational circuit using $2^{n-1}x1$ Multiplexer to obtain the function F(n) = Σm (0, 1, 4, 6, 8, 10, 13, 15)	[5]
13.	a) Design a BCD to Excess-3 Code converter.	[5]
	b) Design a 4-bit Comparator.	[5]
14.	a) Give the truth table of JK Flip Flop and explain the principle of operation of clocked JK Flip Flop with output waveform.	[5]
	b) Draw the logic diagram of a 3 bit up/down synchronous counter and explain its operation.	[5]
15.	a) Explain briefly about sequence detector.	[4]
	b) Design a logic diagram for the given functions using PLA and PAL $F_1 = \Sigma(0, 1, 2, 4, 5, 7)$ $F_2 = \Sigma(1, 5, 6, 7)$	[6]
16.	a) Simplify the given function and implement with NAND gates. F(A, B, C, D) = AC' + ACE + A'CD' + ACE' + A'D'F' $F(w, x, y, z) = (w' + x + y) (w + x' + y')$	2+2]
	b) Design a 4 to 2 priority encoder and explain its operation in brief.	[6]
17.	Answer any <i>two</i> of the following:	
	a) Advantage of Complement representation	[5]
	b) Counters	[5]
	c) State diagram for designing Counters	[5]
	C3(C3(C3(C3(C2)))	